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Abstract

We present an efficient method for computing focus and linearizability
quantities of polynomial differential equation systems. We apply the method to
computing these quantities for ten eight-parametric cubic systems and obtain
the necessary and sufficient conditions of linearizability (isochronicity) of
these systems. We also show that there is a kind of duality between the
problem of constructing algebraic invariant curves, first integrals and linearizing
transformations on one side, and the problem of solving some first-order linear
partial differential equations on the other side.

PACS numbers: 02.60.Lj, 45.05.+x

Mathematics Subject Classification: 34C

1. Introduction

The problem of integrability for differential equation systems is one of the major mathematical
problems and is of great importance for various applications. A significant area of study
concerns the investigation of local first integrals. In the case of real systems of differential
equations of the form

u=—-v+U(u,v) v=u+V(u,v) (1)

(where U (u, v), V(u, v) are convergent series without free and linear terms) we know from
the celebrated Poincaré-Lyapunov theorem that system (1) has a formal Lyapunov first integral
of the form

[0¢]
D(u,v) = w+ v+ Z ¢1,_,-u[vj
I+j=3
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if and only if the origin is a centre on the real plane u, v and then the integral is analytical, and

according to the Vorob’ev theorem [1,36] the centre is isochronous if and only if system (1) is

linearizable (in this case the formal transformation is also necessarily an analytical one).
Using the complex variables x = u + iv we can write system (1) as a single equation:

X =ix+ X(x,X) 2)
where X(x,x) = Zk>2 Xi(x,x) is an analytic function and Xj(x,x) homogeneous
polynomials of degree k. Due to the specific linear part this system (equation) has either
a centre or a focus at the origin in the real plane {(«, v) | x = u + iv}, while the saddles and
nodes are excluded. For systems of the form (1) (equivalently, equation (2)) the notions of
centre and isochronicity have a simple geometric meaning. Namely, the origin of system (1)
is a centre if all trajectories in its neighbourhood are closed and it is an isochronous centre if
the period of oscillations is the same for all these trajectories. However, a better understanding
of integrability and isochronicity phenomena can be obtained by considering not only the real
system (1) but also its complex form (2) along with the more general complex system

X =1ix+X(x,y) y=—iy+Y(x,y) (3)
where X (x,y) = Y 1o Xuxky, Y(x,y) = Y.5o_, Yuxky! are series convergent in a
neighbourhood of the origin. This system is equivalent to equation (2) in the case x =
¥, X;j = Y; and, after the change of time id# = d, we transform it to

dx/dt = x + X(x, y) dy/dt = —y + Y (x, y). @)

We say that system (3) is linearizable if there is an analytic change of coordinate in the
neighbourhood of the origin, bringing the system into the linear one. A nice geometric
characterization of linearizable complex systems of the form (3) was obtained by Christopher
and Rousseau.

Proposition 1 ([7]). System (3) is linearizable if and only if there exists a neighbourhood of
x =y = 0 such that every trajectory inside that neighbourhood is periodic.

There are different algorithms to find the necessary conditions for linearizability; however,
the most natural are the following two. One of them is a transformation of system (3) to the

normal form
X =X1(i+zcj(x1y1)]> i =y1(—i+Zdj(x1y1)f> ®
j=2

j=2
by means of the change of coordinate
4 5 .
X =x+ Z h,((})x{‘ylj y=y+ Z h,ij)x{‘y{. (6)
k+j>2 ktj>2
Then the conditions of linearizability are the conditions
C = dk =0 (7)

forall k > 2.
However, the calculations are much more efficient if instead of (6) we look for the
transformation inverse to (6), namely,

xi=x+ Yy HPxY =HV )  yi=y+ Y HPxY =A%, y)

k+j>2 k+j>2
vzhich Prings system (3) to the linear system x; = ix;, y; = —iy;. Then the functions
H® | H® should satisfy the equations

PAM  9AL 2RO 9A®

X+ ——p9 —iI:I(z)(x,y)z X+

A0 y) =
' (. ) ax ay ax ay

. (®)
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Equating coefficients of monomials x¥y/ in these identities one can determine uniquely the
coefficients Hk(jl), Hﬁ), when j —k # 1. When j —k = 1 we meet the compatibility conditions
(see section 2 for more details)

0-HY, =X 7) 0-HZ , = f2(X,7)

k=

where fk(l)(X, Y), fk(z)(X, Y) are polynomials of the coefficients X;;, ¥;; such that/ +j < 2k.
We call these polynomials the linearizability (isochronicity) quantities. Therefore the system
is linearizable if and only if the infinite series of the conditions

O,y = ]Q)(X, Y)=---= X, v) = ka)(X, Y)=---=0 (9

is satisfied. We present a further development of this approach in section 3.

However, what do the linearizability conditions for system (3) have to do with the
linearizability of the real system (1)? First of all the conditions (9) are the conditions of
linearizability of system (3) which contains as a particular case equation (2) and, therefore,
system (1). Hence, due to the Vorob’ev theorem [1, 36] equation (2) (= system (1)) has an
isochronous centre at the origin if and only if

AED =X 0==X0=f"X )= =0
To see another connection we make, following [8], in equation (2) the substitution
r?2 = xx, 6 = arctan(Im (x)/Re (x)). Then we get
dr _ ., iF txk_ (XE+ X020 Vs r*Re (Sk(6)) 10
do XX —xX 1+ (XF — Xx)/Qir2) 1+, rIm (Si41(6))

where S;(0) = e X, (e, e ?). Denote by r(6, p) the solution of the initial problem
r(0) = p for equation (10),

10, p) = p+ur(0)p* +u3(0)p> + -+ with u; (@) =0 for k >2.

Let P(p) = r(2m, p) be the return map defined on the & = 0 axis. The values u; (27)
(which generally speaking are polynomials in the parameters of system (2)) determine the
behaviour of solutions (10) near the origin. Namely, if the first nonzero value uyi, (27) (it is
well known that the first nonzero coefficient has a necessary odd subscript) is negative, then
the system has a stable focus at the origin, if it is positive then the focus is unstable, and if all
uy (2m) vanish then the origin is a centre. The quantity defined as gz,+1 = U241 (27) is called
the mth Lyapunov quantity.

Let now suppose that the origin is a centre for system (2), that is the functions uy (6) are
periodic for all k > 2. The period function, T (p), at p is defined as the time spent by the
closed orbit (6, p) to turn once around the origin. A centre is isochronous if 7'(p) is constant.
We have

do i :
— = —— (i +xx) =1+ Y A m (S 0)).
dr 2r2 k/;

Hence, near the origin

T( )_/2ﬂ dé _5 +Z/2n (e)dg )
=, 1+, 5,70, p)'Im (S (6)) 4 G o*.

k>1

Denoting #(0) = foe e (s)ds we get T(p) = 2w + Zk>1 1t (2m) p*. Obviously, the centre
is isochronous if and only if #(27r) = O for £ > 1. It is known [5, 8] that the first k£ with
t(2m) # 0 is an even number. We call T»,, = t5,, (27) the mth period quantity. The function
T (p) and the values Ty play a crucial role in the investigation of the problem of bifurcations
of critical periods [5].
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Note that neither linearizability quantities fk(l), k(z) nor periodic constants T, are

determined uniquely (the same is true also for focus and Lyapunov quantities). The uncertainty
comes from integration constants for the T,; values and from the possibility of choosing the
coefficients Hk(i)l o Hk(zk) .1 arbitrarily, when we compute k( ]), k(z)_ But the varieties defined
by periodic and linearizability quantities in the space of parameters should not depend on the
way they are calculated. However, it is much easier to handle the varieties in C" than in R”".
This (along with the computational efficiency of calculations of the linearizability quantities

k(l), fk(z)) is the main reason why we prefer to work with the more general system (3) (or, in
fact, (4)) rather than with the real system (1). Then, if we have the linearizability conditions for
system (3) but we are interested in linearizability conditions for system (1), we get conditions
after substituting Yy; by X k-

We conjecture that the following formula is valid:

T = X, X)+ £2(X, X) mod J
where
J=U+ ("X X+ 2%, ., [0 X+ 12X X))

where [ is the ideal generated by Lyapunov quantities (or defined below focus quantities), and
£V, £ are chosen such that £ = iy, 2 = jum With i, jmm defined in section 2. At
present we cannot prove this formula but we have checked by using the expressions for 7o
given in [13] and our algorithm for computing focus and linearizability quantities obtained in
section 3 (see also the appendix) that it is true for the case of equation (2) with X (x, x) being
a homogeneous polynomial of second degree. We remind the reader that an ideal of a ring is
a subring closed under multiplication by any element of the ring.

Important results on the centre and isochronicity problems were obtained in the 1960s
and 1970s and presently the problem is once again attracting considerable interest (see,
e.g., [1,3,12,18,23,33-39] and references therein). In recent years the use of computer
algebra led to remarkable progress in the investigation of the centre and linearizability problems
for polynomial dynamical systems. The study demands computing focus and linearizability
quantities which are polynomials of the parameters of the polynomial system. However, the
expressions are typically very large and in one of the directions of research considerable efforts
have been devoted to developing methods and program packages for computing focus and
linearizability (isochronicity) quantities for planar ODE systems (see, e.g. [4,6,13,21,22,31]
and references therein).

We also developed such algorithms: an algorithm for the computation of the focus
quantities of polynomial systems of the form (11) was announced in [26] and one for
linearizability quantities in [27]. In this paper we describe them in more detail. In our opinion
our algorithms are the simplest and the most efficient because the calculation is reduced to
just the summation and multiplication of rational numbers. The other important feature of
our algorithms is their similarity: we use almost the same formula for computing both focus
and linearizability quantities. In the appendix we present a Mathematica code for computing
focus and linearizability quantities of a cubic system of differential equations based on our
algorithm.

Using the algorithm we have computed up to 14 first linearizability quantities for 12
eight-parametric subfamilies of the cubic systems (the subfamilies consist of the systems
with one quadratic term and three cubic terms per equation) and then we have resolved the
linearizability problem for ten of these systems.

In the last section we demonstrate that there is a kind of duality between the phase space
of a polynomial system and the space of its coefficients and between the Lie derivative along
the polynomial vector field and a first-order linear partial differential operator.
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As we have mentioned above, in fact, to solve the linearizability problem for a polynomial
system means to verify whether the normal form of the system is linear. Therefore, developing
methods for the investigation of the linearizability (isochronicity) problem we provide efficient
algorithms for the transformation a system of differential equations to the linear normal form.
To apply the ideas of this paper in order to improve the efficiency of transformations to nonlinear
Birkhoff-Gustavson normal forms (in particular, in the spirit of [24]) is certainly one of our
important ongoing projects.

2. Preliminaries

In this paper we will restrict our consideration to polynomial families of system (3). However,
many expressions will look simpler if we apply the change of time r +— —if, which
transforms (3) into a system of the form (4). So, we will consider the polynomial system
of the form (4)

dx
a T Z apgx”'y? = P(x,y)
d (p.q)€S (11)
Yy
_d_ =y—- Z bqpqup+1 =-0(x,y)
! (P)ES

where x, y, apq, by, are complex variables, S = {(m, k)|m+k > 1}isasubset of {—1UN} x N,
N is the set of non-negative integers. Let / be the number of elements in the set S. We denote
by E(a, b)(= C?) the parameter space of (11), and by C[a, b] (Q[a, b]) the polynomial ring
in the variables a,,, by, over the field C (over Q).

For system (11) one can always find a Lyapunov function

Wi, y) =xy+ Yy v joix'y/ (12)
1+j23
such that
def OV o
D(¥) = S PG+ WQ(x, Y) = g () + gn(xy)} + g (xy)C +-- - (13)

Definition 1. (1) The origin of system (11) with fixed coefficients (a*, b*) € E(a, b) is called
a centre if there is a formal power series of the form (12)

o0
Wx,y) =xy+ »_ v, b)x'yl
1+j=3

1j=0

such that
D(W¥) =0 (14)

(implying gi. = 0 for all k, i.e. V(x, y) is a first integral of system (11)).
(2) The origin of system (11) with fixed coefficients (a*,b*) € E(a,b) is called a
linearizable (or isochronical) centre if there is a formal change of coordinates

oo o0
a=x+ Y ) @ bOx"y m=y+ Y oul @ by (15)
m+j=2 m+j=2
which transforms (11) to the linear system

21 =21 2 = —2p. (16)
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Remark. As it shown in [38, p 845] if x = y (this is the case of real system (2)) then
g2+1 = const - g for a suitable choice of g1 and gi.

Taking derivatives with respect to ¢ in both parts of each equality of (15), we get

o0
=i+ Z ui}ll’j(mxmflij+jxl11 j*ly) (17)
m+j=2
00 . .
= 4 Yy mx" ylk+ jxmy )., (18)
m+j=2

Equating coefficients of the terms x?'*'y%, x%1y®*! in equations (17) and (18),
correspondingly (instead of z;, Z», we substitute z; and —z,, correspondingly, given by (15))
we obtain the recurrence formulae

qit+q2—1

1 1 1
(g1 — QZ)MEH)qz = Z [(s1 + l)u_glzzaql—sl,qz—sz - S2u§l‘22bq]—s|,q2—sz] (19)
S]+52=O
qi+ga—1
2 2 2
(C]1 - 6]2)“51])42 = Z [Slu§lAzzaqlfs],qusz - (52 + 1)u§|zzbqlfn,qgfsz] (20)
S]+52=O
1 1 2 2
where g1, 2 > —l.gi+q > 0.uf’ | = u]| = 0,uf) = ug = 1, and we put

Agm = bug = 0,if (g, m) & .

Thus we see that the coefficients “51111127 “1(121212 of the transformation (15) can be computed

step by step using formulae (19), (20). In the case g1 = g2 = ¢ the coefficients u{)), u{>) can
be chosen arbitrarily (we set u(}) = u.) = 0), but the system has a linearizable centre only

if the quantities on the right-hand side of (19), (20) are equal to zero for all ¢ € N. In the
case g; = g» = g we denote the polynomials in the right-hand side of (19) by i,, and in the
right-hand side of (20) by — j,.

We call the polynomial g,, € Q[a, b] in the right-hand side of (13) gth focus quantities
and igy, jyq the gth linearizability (isochronicity) quantities (we used the notation £V, — f?
for them in the previous section).

Definition 2. The ideal in the polynomial ring k[xi,...,x,] generated by polynomials
fi, ..., fs, denoted (fi, ..., fs), is the set
(fi, .o fs) = Zuifi lu; € klxt,....,x ], i=1,....s
i=1
The maximal set V C E(a, b), where system (11) has a centre, is the set where all polynomials
gii,i = 1,2,... vanish, that is, V is the variety (the zero set) of the ideal generated by the
focus quantities g;;. Similarly, system (11) has a linearizable centre in the origin if and only if
i (a@*, b*) = ju(a*, b*) = Oforall k € N,
Denote by V (I) the variety of the ideal 1.

Definition 3. The set

Ve =V ({811, 8225+ Giis - --)
is called the centre variety of system (11).

So, for every point in V; the corresponding system has a centre at the origin in the sense
that there is a first integral of the form (12). However, if (a,b) € V¢ and apy = 5q,, for all
(p,q) € S, then such a point corresponds to a real system of the form (2), which then has a
topological centre at the origin in the plane x = u + iv. (For a geometrical interpretation of
the centre of the complex system (11) see, e.g., [39].)
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Definition 4. The set
Vr =V ({i11, ji1s 022, jo2s -« bkks Jiks - - )
is called the linearizability (isochronicity) variety of system (11).

As we see we use the notions centre and isochronicity as synonyms of local integrability
and linearizability, correspondingly.

3. The calculation of focus and linearizability quantities

In this section we present an efficient algorithm for computing focus and linearizability
quantities of systems of the form (11). The algorithm is a further development of the methods
presented in [21,31].

We assume that § = {73, ..., 1;}, where iy = (py, g5) is the ordered set of the indices of
the coefficients of the first equation of system (11) and consider the map L : N* — N2 (recall
that [ is the number of elements in the set S), defined by

L?(v)
+o vy o+ Vg 2n

L'(v) - - - - - -
L(v) = ( =Vl + Valp -+ Vgl + Vi Vi i+ V2 Ji-1

where Jj, corresponds to 7y, such that if j, = (;’5), then 7, = (Zf).
Denote by M the monoid (= semigroup) of all solutions of the equation L(v) = (k, k)T,
where k runs through the whole set {0, 1,2, ...} and by Q(S) the monoid generated by the

set S, so that €(S) contains all sums of elements of S. Let QIM] C Qlg;, ..., q;,b;

ur =g’
b3 ] f Qla, b] be the monoid ring of the monoid M over Q and Q[2(S)] C Q[a, b] be

the monoid ring of the monoid Q(S§).
Denote by [v] the monomial
V] =ala?...a' b b’ . b*
2 u Ji-1 Ji
and by v the involution of the vector v

V= Vo, Vai—1, ..., V2, V). (22)

Definition 5. Assume (’:) € Q(S). A polynomial g € Q[R2(S)], g = Zuesupp(g) awlvl is
called a (m, n)-polynomial if for every v € supp(g) the condition L(v) = ('Z) holds.

It is easily seen that we can choose the coefficients u,(;,) , u,(j,) such that

igq = _qu (23)

where by jqq we denote the polynomial obtained as the result of the action the involution (22)
on jq4,1.e. as aresult of replacing every monomial [v] of j,, by the monomial [V]. In particular,

this is the case when our assumption u>, u,’ = 0 holds.

Theorem 1. (1) There exists a formal series V(x,y) of the form (12) and polynomials
g1, 822, ... such that (13) holds and v;; = 0Vi = 1, v, € Q[R(S)] and vy, are (k,n)-
polynomials, g;; € Q[M] and g;; are (i, i)-polynomials for all (k,n) : k+n > 0, k,n >
—1,i>1.

(2) The coefficients u,(;), u,(;) of the transformation (15) are (k, n)-polynomials for all
(k,n) : k+n >0, k,n > —1; the linearizability quantities iy, ju. belong to Q[M] for all
k > 1 and are (k, k)-polynomials.
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Proof. (1) By equating the coefficients of the term x”y? in identity (13) and putting
p — 1 =ki,q — 1 =k, we obtain the recurrence formula

ki+ko—1

(ki — k)i, = Y 11+ D5,k 51 ks — (51 + Dy, Dy 05, ) (24)
S]+52=0

where kj, ko > —1,kj +ky > 1,v90 = 1, v, = v_;,; = 0 and we set ay,, = by = 0, if

(k,m) & S.

We prove that vg, € Q[Q(S)] and vix, is a (ki, k2)-polynomial by induction on
m = k; + k. For m = 0 the proposition holds. We assume that the proposition is true
for all m < mg. Letk; + ko = mo + 1, ky # kp. Consider the product

Usi5:0ky—s1.kp—s2 = ( Z Ol(v)[”]) (]

VEsupp (UJISZ)
where © = (0,...,0,1,0,...,0) such that 1 stands at the place corresponding to vector
(ky — s1, ko — s7) inthe ordered set S. i € €2(S) and due to the induction assuming v € Q(S).
Therefore, v + u € Q(M) and hence

Vs 5,k —s1,kr—s2 5 Uvzslbkl 52,ko—51 € @[Q(S)]
Taking into account that L(®) = (k‘ ”) and thanks to the induction hypothesis we conclude

that L(v + p) = (kz). Therefore vz, is a (ky, k2)-polynomial.

If k; = ky = k we choose v, = 0 and gix equal to the right-hand side of (24). As above
from (24) we conclude that gy is (k, k)-polynomial.

The second statement is proven similarly. |

Corollary 1. If (m,n) & Q(S), then v,,,, uﬁ,},)l, “23;)1 =0.
Consider the formal series
(.f) _ (e, B) a’a” aV b bV Vo
4 Z V(vl Voo iy 91y -0 GG bj/ bj/ I b]l (25)

.....

formula:

1 i
(@.B) _ (@.B) 1 o
Vi) oy = —L‘(v)—Lz(v)(;V(”‘ ,,,, ety L QL v =1 vy) @)

21
= Ve L v = 1) +,8)> (26)
i=l+1
if L'(v) # L2(), V&P = 0,if L'(v) = L2 (v); Vo?))) = 1 and we @h =
(\)1 ..... Uz]) — Y AV =AM T(0,..., 0) - pUt V(Vl ..... Uz]) - Ofor
allv = (vq, ..., vy), such that there exists i : v; < 0.

Theorem 2. (1) The coefficient of [v] in the polynomial vy, is equal to V((Ul1 L)z oy COmputed
according to (26) witha = = 1.
(2) The ith focus quantity of system (11) is
D Sl @l bIBY DY (27)
v:L(v):(::)

where

]
1,1 1
wam=ZmﬂH1Muwmw—uwmnn ..... _____

.....

21
=Y Ve Py = 1) + 1) (28)

i=l+1
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and V((vl)’l) are defined by (26) witho = B = 1.
(3) The following property occurs:

(1,1 (1,1 . - (1,1 . -
Voy ' =V 8w = —8w) if v#£v Voy ' =8w =0 if v=nv.
(29)
(4) The coefficient of [v] in the polynomial u,((il) and the coefficient of [V] in the polynomial ufk)
are equal to V((vll"?))z _____ o) Where V((Vl]’,(\)))v,...,vy) is computed according to (26) witha =1, B = 0.
(5) The linearizability quantity iy of system (11) is equal to
ikk = Z i(vl,vZ,...,sz)a;] al-”; N a;’bljj—;ﬂb;’j ‘e b]])—ly
viL(v)=(k,k)T

where

i
. 1,0 1
i) = D Ve oty L 01 vy = v+ 1)

k=1

21
§ : (1,0) 2
— V(vl """ u/-—l,m,VZI)L (vl,...,vj — 1,...,1)21)
j=l+1

and V((vl)’o) are given by (26) witha =1, 8 = 0.

Proof. (1) According to theorem 1 coefficients vy, of the function W uniquely define the formal
series (25) and, vice versa, every function of the form (25) uniquely defines the corresponding
set of (k, n)-polynomials.

If v is such that L' (v) # L?(v) then by equating the coefficients of [v] in the left- and
the right-hand sides of (24) we obtain that formula (26) occurs. If L'(v) = L*(v) then we set
V&P = 0 because we choose vy1(,) 12 = 0.

(2) The ith focus quantity is equal to the right-hand side of formula (24) in the case
i = k; = ky. From this fact and theorem 1 the proposition follows.

(3) Taking into account that L'(v) = L?(v), L?(v) = L'(v), from (26), (28) we get that
formula (29) holds.

The statements (4) and (5) are proven similarly to (1) and (2), respectively. O

Note that in order to compute the linearizability quantities — ji; one can use formula (26)
with « = 0, B = 1, but in fact we immediately obtain these quantities from i;; using
formula (23).

Thus we see that the linearizability quantities can be computed using almost the same
formulae which we obtained for the focus quantities. To compute the quantities one needs
only to apply summation and multiplication rational number operations. The formulae are
also very easily programmed. For example, using Mathematica one can write a code with
the formulae practically in the same form (25), (26) as they are given in this paper (see the
appendix).

Using statements (2) and (3) of theorem 2 we get the following important result.

Corollary 2. The focus quantities have the form

gi= Y 8umvl—I[b]. (30)
v:L(v):(::)
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4. The linearizability conditions for some cubic systems

We consider the complex cubic system of the type (11)
% =x(1—ax —any —a_px"'y* —apx® — anxy — apy’ —a_i3x"'y?)

=P(x,y)
¥ ==yl = by 1>y~ —biox —bory — b3 1x°y ™! = bax” — biixy — boay?)
=Q(x,y).
In this section we obtain the necessary and sufficient conditions of linearizability of
a centre for some eight-parametric subfamilies of system (31). Namely, we consider the
systems where one of the coefficients ayg, ao1, a—, differs from zero and one of the coefficients
ax, aii, o, a—13 is equal to zero. If {a[-*j} is such a four-parametric set, we keep in the second
equation of system (31) the corresponding {b’;i} parameters differing from zero and set the
others equal to zero. Obviously, there are 12 such eight-parametric systems. We will encode
the set of these systems using the parameters of the first equation equal to zero. For example,
writing ajo = a_1» = a_13 = 0 denotes the system

(3D

& =x(1 —agy — anx® — anxy — any’) 32)
¥ =—=y(1 = biox — byox* — bi1xy — b y?).
To solve the linearizability problem for these systems we computed the first linearizability
quantities g, jrx up to k = 7. The polynomials are too long, so we do not present them here;
however, one can easily check our calculations using Mathematica or any other computer
algebra system (our Mathematica code for computing the linearizability quantities is presented
in the appendix). Then using the computer algebra program Singular [17] (one can also
use, e.g. CALI [15] or Macaulay [16]) we find the primary decomposition of the ideal
(i1, j11» .-, 177, j77) and obtain the necessary conditions of linearizability. To prove that
the obtained conditions are also the sufficient conditions for the centre to be an isochronical
(linearizable) one we look for a Darboux linearization [7,23].

Definition 6. We call a Darboux linearization of system (11) a change of variables

71 = Hi(x,y) 22 = Hy(x, y) (33)
which transforms the system to the linear one, 2y = z1, 2o = —22, and such that at least one
of the functions Hy, H; is of the form

H=f" - f* (34)

a; being complex numbers, where the fi(x, y) are invariant algebraic curves of system (11)
defined by f;(x,y) = 0, that is, polynomials satisfying the equation
afi ,  0fi

P Lo = Kif: (35)

The polynomial K; (x, y) is called the cofactor of the invariant curve f;(x, y).
There are two commonly used possibilities to construct the first integral. The first one is
if

OliKi =0 (36)

-

i=1

then H = f}"" --- f* is a first integral of system (11). The second one is if the equality

> BKi+P+0,=0 (37
i=1
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is satisfied (where again B; are complex numbers), because then it yields the integrating factor
w=f ~-~ff“ of the equation Q(x, y)dx — P(x, y)dy = 0.
Now we seek the linearizing transformation. It can be shown [23] that if

k
P(x,y)/x+) aiK; =1 (38)
i=1
then after the substitution
a=xfit e i (39)
we get
1=z
and if
k
Q. y)/y+> oK =—1 (40)
i=1

then the second equation of system (11) is linearized by the change

2=yf" i (41)

On the other hand, if system (11) is such that only one of the conditions (38) and (40) is
satisfied, let us say (40), but system (11) has a Lyapunov first integral ¥ (x, y) of the form (12),
then (11) is linearizable by the change

21 =WY(x, y)/Hy(x,y) 22 = H(x, ) (42)
and, correspondingly, if (38) is satisfied, then the linearizing transformation is given by
21 = Hi(x,y) 2 =W(x, y)/Hi(x,y) (43)

as can be verified by a straightforward calculation [7].
Theorem 3. Table I takes place.

Proof. We say that the linearizability condition A is ‘symmetric’ to the linearizability condition
B if after replacing any aj;, by in A by b;;, ay, correspondingly, we get B. Obviously it is
sufficient to consider only one of the ‘symmetric’ conditions.

(D-(1) This case is a particular one of (II) (1) considered below and (2) is ‘symmetric’ to
(1). Below we will mention only one of the ‘symmetric’ cases.

(ID) In this case the system has the form

& =x(1 —a_px'y? — axx? — apny? —a_izx~'y?)
¥ =—=y(1 = by 1x>y™" — byox® — by® — b3 _1x°y ™).

Here (4), (5), (7) and (9) are particular cases of the system with homogeneous cubic
nonlinearities considered in [7]. The case (3) is the same as (IV)-(2) and the case (8) is identical
to (IV)-(5) examined below. In the case (1) the so-called symmetry conditions [18,20,31] are
satisfied, therefore we have a first integral (12) and the linearizing substitution

_ F(x, y)y/1 = bpy? = y
= S S
y V1 —=bpy?

(IIT) When the conditions (1) are fulfilled the corresponding system is a particular case of
(ID-(1) and the case (3) is considered in [7].
(IV) We present the proof for this case in section 5.

21 (44)



10278 V G Romanovski and M Robnik

Table 1. The isochronicity varieties

Case System Linearizability (isochronicity) conditions

I ajg = ap; =az =0 (1) by, —1 = byo = b3, 1 = b1 =ay; =0;

(2)a—13 =ap =a-12 = b1 =a;; =0;
I ajo =ap; =ay; =0 (D by —1=by=b3-1 =ax0=0;2) by =a-13=apy =a-12=0:
(B) by, —1 =b3,—1 =a_13 = am +bp = ax +by =0:

(4) by, 1 = 11263, +27b3 _ oy = 49a_13b3 — 9bs 153, = 2la_13b3 1
+16b20bo = 343a> ;b2 + 4853, = Tags + 3box = 3az0 + by = a_12 = 0:
(5) ba,—1 = bop = b3,—1 = ap = ax +3bx =a—12=0: (6) b3,—1 =a_13

=an +bo = ax +by =a-12=0: (7) by, -1 = by = a—13 = 3am + b
=ay=a-12=0;8)by—1 =bopp =b3—1 =a_13 = an

=ax +2by =09 by—1 =byp=b3—1=a-;3=an=a-12=0;
(10)bao = b3,—1 = a—13 = 2ap2 + boy = az0 = a-12;

I ayp = apr = apn =0 (1) ba,—1 = b3, -1 = axp = b1y =a11 =0;(2) b2 = a-13 =a-12
=by=an=0,03)by—1 =b3 1 =a-;3=a-1p=by1 =a; =0;

IV apo=ap =a-13=0 (1)by—1 = by =ax =b11 =ai =0;2) by,—1 = apz +boz = ax + by =
by = a1 =0;3) boy = apy =a-12 = by =ap =0;
@) apx +boy = axo + by = a—12 =byy =an =0;

(5) by, —1 = boz = agy = ax +2by0 = b1y = ay = 0;
6) by, 1 =by=app =a_12=>byy =a;; =0;

(7) byo = 2apz + boy = axo = a—12 = byy = aj; =0;

v ajg=a-pp=a;;1 =0 (1) byo =by =b3—1 =ax =0;(2) bpxy =a—13 = apx = ap; = 0;
(3) big = by = b3 1 = a_13 = 2a}, +ap, = 0;
(@) boz = 6b}, + bao = b3, _1 = agx = axy — 93, = ap = 0;

(5) bio = 112b3 +27b3 _ boy = 49a_13b%) — b3, _1b3, = 2la_i3b3
+16b20b02 = 343&3]31720 + 481)82 = Tapy + 3b02 = 3(120 + 71)20 =ap = 0;

(6) bio = boz = b3,—1 = apa = ax +3bz = ag1 = 0;
(1) 2b3 + by = b3 1 =a_13 = ap =ap = 0;
(8) b1o = b3,—1 = a_13 = ag + boz = azo + b2 = ap; = 0;

(9) bio = byg = a_13 = agy + 643, = azy = 9a3; — bpz = 0;
(10) b1o = by = a—13 = 3apz + by = azp = ap1 = 0;

VI apo=a-np=an=0 (1)bjo=>bi1 =bs—1 =ax =ay; =0; (2) bz =b11 =a-13 =aop
=ay =0; (3)ay = b2y, boz = a3y, b1y = a1 = —agibo, a—13 = bz, = 0;
@) byo=by1=b3 1 =a_13=ap =aj; —b; =0;

VII app=a-pp=a_13=0 (1)ap = by = ax — b3y = aobio + b1 = apibio +ar = al; — by, = 0;
(2) bop = b1y = ay1 = apx = apr =0;(3) apx = ag1 = ay = by = by
+2b%) = 0; @b1o = by = b1 = a1 = ax = 0; (5) bio = by = b1y = ay
= ap +2a, = 0; (6) big = ap = a1 = by = a + by = ax + by = 0;

VIII apr =a-12=a-13=0 (1) box = apz = b11 = a1 = 0; (2) ap2 + boz = az + b = b11 = a;; =0;
(3) bao = agy = b11 = ay =0; (4) byo = ax = b1y =ay; =0;

IX  an=a-nn=anp=0 ({)bs_1=a-13=>bi1=an=0;2)bpy =a-13=>b11 =a;; =0;

(B)a—13+boy = ax +b3 -1 = by =a;; =0;
4) b3,—1 = axp = by1 = a1 =0;
X app =a-12=ax =0 (1) by =b3 -1 =by1 =ai1 =0;(2)a—13 =apx = b11 = an

(V) Here cases (5), (6), (8) are the particular ones from [7]. In case (1) we again have the
symmetry component of the centre variety [18,20,31] and, hence, there is a Lyapunov integral
and the linearizing substitution is given by the formula (44).
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When the conditions (3) hold the system has four invariant lines

Lh=x L=y I3 =1—/bpy ls =14+ /bpry

and, if bp, # 0, then there exists the integrating factor

— Lh (2a3,—ao1 v/bo2) /b l4(2 a3, +ao1 v/bo2)/boz .

X3 y3
The factor yields non-holomorphic first integral; however, then a first integral of the form (12)
should also exist. Therefore, the system is linearized by the change (44). A linearizing change
of variable there exists also when by, = 0 because the components of the linearizability variety
are closed sets in Zarizki topology.

We failed to find linearizing transformations in cases (4) and (9), so, in fact, in these cases
the statements (V)-(4) and (V)-(9) are just hypotheses.

(VI) Case (1) is a subcase of (V)-(1) and (3), (4) are particular cases from [27].

(VII) This case was considered in [27]. Here, in case (1), using another approach, we
found a new type of linearizing transformation previously unknown. We present the approach
and the treatment of this case in section 5.

(VIID) In [28] we found for this system the following linearizing substitutions:

(1)
1 =x slh01/24/—4a02+b(2]1—a]0/24/a120—4h20s3—%+a10/24/af0—4h20 sz—%—h01/24/—4a02+b8]
7y = ySl7bg|/24/74a02+b31+a|0/24/af074bzoszf%+bm/2./74a02+b(2“ S37%7a10/24/74b20+a;“0

where
ST = 1-— % ((110 + afo — 4b20)x — % <b01 +4/ —4(102 +bél)y
?2=1—%<a10+ a10—4b20>x—%(b()l—,/—4a02+b(2)l)y
S3=1—%<a10— ar 4 by x—%(b01+,/—4a02+b(2)1>y
=11 — 2 1 —J— 2
ss =1 5 | ai0 aro 4 by |x 3 boy dag +b01 y.
(2)
7 = xSl*%*010/2\/4a20+a|02S2*%+a10/2\/ﬂ102+4azn = ySS*%*bm/Z\/4l7<)z+17012 s4*%+b01/2\/4b02+b012_
with
s1=1-— % (am +,/af0+4a20)x sp=1— % (am — ,/a%0+4a20)x
53 = 1-— % (bOl +1/4b02+b(2)1>y Sq4 = 1-— % (b()] — ,/4b02 +b(2)l)y
(3)
21 =V(x, y)/H(x,y) 2 =H(x,y)
where

H(x,y) = ys37%7bm/24/4b02+b§, s47%+b01/24/4boz+b§l
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s3, S4 are given above and W (x, y) is the Lyapunov integral (12) of the system. Using theorem 1
from [26] it is easy to see that the function W/ H is analytic.

Taking into account that the components of the linearizability variety must be closed
in Zariski topology we conclude that the corresponding systems are also linearizable when
Cllzo = —46120, b(zn = —4[?()2, afo = 4b2(), b(z)l = 46102.

(IX) (1) In this case there are four invariant lines:

L =1-— % <a10+,/af0+4a20>x L=1+ % (—a10+,/af0 +4a20>

X
(45)
l3 =1- % <b()1 +\/b(2)1 +4b()2)y l4 =1+ % (—bm +,/b(2)1 +4b02)y
and the linearization is defined by
1= xllllllgz = ylg,?lzm
where
a10+‘/a120+4a20 —a10+,/a120+4a20
o = — oy = —
2‘/61]20-!-46120 2 a]20+4a20
(46)
b01+1/b81+4b02 b01—,/b31+4b02
o3 = — (67} .

21/b(2]l +4b02

% = x(1 — ajpx — axx?) y=—y(l —bory —bs_1x’y ") 47

2,/b(2)l +4b02

(2) To prove that the system

has a centre in the origin we use the method developed in [11].
Expanding the equation of trajectories into the power series we get

dx = ;
a = ;aix (48)
where
B _ —apB* _ —anB* 49
A3y = W A3y = W a3+3 = W (49)

k>0,B=—bs_;and a(y) = y(bo1y — 1). We look for a first integral of system (47) of the
form

> .
H=) H(yx". (50)
i=1
Then the functions H; satisty the differential equations
H]/ + a H] = 0,
HZ/ +2a1H, = —ax Hy,
: (51)
HI; +ka1Hk = fk,

where

fi=—(k—DayH_1 — (k —2)azHy_» — - - - — ar H,.



The centre and isochronicity problems for some cubic systems 10281

From the first equation we get
Y

H=— (52)
bory — 1
and the next five yield
H? H}P H}P,
H, = _ ol H; = Hi () H, = H{ Py(y)
y y? y* (53)
. _ PO . HPPO)
ST T 6= 76
y y
where here and below we denote by P; any polynomials of degree i.
We show that the coefficients H,, have the following general form form > 1:
Hy ()% Psjypsoy ()
T when s=1,2,3
y
Heps (y) = , (54)
Hy(y)% Pspypsey ()
T when s5s=4,5,6
y

where [a] denotes the integer part of a.
We prove the statement by induction on k. According to (52), (53) for k = O it holds. Let
us suppose that the formula is proven for k < m and consider the case k = m. Note that

H.(y) = Hi(y) / Jr)Hy(uw)™" du (55)

where f, = er;ll (r —i)ajs1 He—;, and
Y Py Py
/ () du — »

u= (56)

un ynfl

when n > s+ 1 (of course, the polynomials P,, in the right-hand side of (56) and the left-hand
side are different, but for us only the degree is important, so we use the same notation P, for
any polynomial of degree ). Using (55) for k = m we have

)7 m
Hepmis (y) = —H, (y)émH / <Z(6m +s5+1—1i)a; (u)H6m+s+1_,~(u)) H,; (L{)_Gm_‘Y du.

i=2

Therefore to prove (54) it is sufficient to show that

Ps,s=11(y)
y % when s=1,2,3
a3t () Hopss1 35— ) Hy () ™"~ du = Y (57)
P, 501 (3)
Sm+[5]
o when s =4,5,6.
y nm+s
forl =1,2,3.
Let us consider the case = 3. Then
y
/ @343 () Hopas 31— () Hy () 0" du
Y 1 —6m—s
=C mH6m+sf3k72(u)H1 () du (58)
01U —

where C is a constant. Assume that & is even. Then (49), (54), (56) and (58) yield
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y
/ 343 () Hoppws 31— () Hy () ™0 du

_ P5m7§+[ %Hl (y)

y8m+sfl

Y (1 = boyu)*+! Psyy_st sy (u)
A3 L Sm—Hcks—3
when s=3,4,5
h Y (1 = boju)?+! P5m7%+2(u) Ps,453(9)
/ L3 uSm—tas—3 T T s
when s =26.

In the case s = 1, 2 we obtain

y
- / ask+3 (u)HG(m—%—])+S+4 (w)H, (“)76m7§ du = /
All obtained formulae agree with (54).

Similarly, for k odd

y

y
/ 343 (1) Hopws 31— () Hy () ™0 du =/

Y PSm—4+[#](”) _ P5m—3+[%](y)

u8m+s—l y8m+s—1

313 0) Hg 503100 (0) Hy 00) ™" du

Ps,yk_34ps21(Y)

y8m+571

Y (1= boyu)®*! Psyy_st sy ()
A3 LSm—dkes—3 4=
when s =23,4,5
B Y (1 - bo]u)2k+1 P5m7%+% (u) P5m7§+% )
/ L3 wsm—tad ST T R
when s =6.

Andfors =1,2

y
_/ a3k+3(”)H6(m_‘%'_1)+s+1(”)Hl(”)_ém_s du Z/

Y Pyt @) Py ()

2
u8m+x—l

- y8m+S—l :

Again, in agreement with (54). Analogously, one can consider the cases [ = 1 and 2 and
to check that (54) also holds in these cases. Therefore the system has a first integral of the
form (50) with the coefficients H; given by (54). According to proposition 2 from [11] it follows
that there is also a Lyapunov integral of the form (12). Hence the system is linearizable by the

substitution

_ Y(x,y)
xl}1g?

71 = xI$? 2

where /1, [; are defined by (45), «j, oy by (46) and W is a Lyapunov integral (12).

(3) In this case the linearizing change is
z1 = xRS 2 = YIRS

where

I3 1+

=

<—a10 - ,/a%o +4a20> X + %(—bol + b(%l +4b02)y
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bo] +1/b(2)l +4b02 —a10+,/af0+4a20
o) = —
2,/bél+4b02 2,/a%0+4a20

boi a

3= - .
2\/17(2)1 +4b02 2 a120+4a20

and

o = —

o

(X) Consider case (2) when the system has the form
i=x(l—awx)  §=-y(1=boy—byox’—bs_1x*y") (59)

and the equation of trajectories is

-
dy =
where
Pln—1)/3)
ay = Tﬂ/[—] (60)
y 3 2

where P,, is a polynomial of degree m and 8 = (1 — by, y).
As in the case of system (47) we look for a first integral of the form (50). Then

bory — 1
H = 01y
y
and one can prove by induction that
Hi ()% Py _2(y) Hy(y)* Py 1 (y)
H = - H = TV
2% (Y) oD 2k+1(Y) O — et

Hence, according to [11] the system has a centre in the origin, which is linearizable by
the substitution

x W(x, y)(1 —ajox)
1= = .
1 —ajpx X
O
Remark. In the case of the systems ajg = a_1» = ayp = 0O and ag; = a_1p = a;; =0

using our computer facilities we were not able to find the primary decompositions of the
corresponding ideals and, therefore, to find the necessary conditions of linearizability. So the
problem for these systems is still open.

5. A linear operator dual to D(¥)

Let
W= Wam.oparar ...l b b2 b (61)

Ty T Ji-1 Ji
be a formal series with W(0) = 1. Let us denote
ow .. . aw . .
AWy = > —aji—j—i(a)+j,b)+ Y ——byli —j—i(l,a)+j(1,b)
= aa,-- = Bb,
@i,j)es J (Jj,i)es J
(62)

where (1, Cl) = Z(iqj)esa,j, (l, b) = Z(j,i)ES b,’j.
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We call a function f(a, b) &f fla;,,a;, ..., a;,bj, ..., b;) with the property
A(f(a, b)) =k(a,b)f(a,b) (63)

where f(a,b) and k(a, b) are polynomials, the eigenfunction of the operator .4, and the
function k(a, b) we call the cofunction.

Theorem 4. (1) System (11) has a centre in the origin for all values of the parameters ay,, by
if and only if there is a formal series (61) satisfying the equation

AW) = W((1,a) - (1,D)). (64)

(2) The origin is an isochronical centre of system (11) for all values of parameters ajy, bui if
and only if there are formal series W, W of the form (61) satisfying the equation

AW) =W(,a) AW) = —W(1, b). (65)

Proof. Let F(uy,...,u,) =Y. Fo,... ,,”)ui‘ ...u)" be a generating function. Then with the
monomial v; Fy,, 1,/,1,.,_%)@1 ...u;" one can associate the differential operator u,-(u,-F)’ui
when i = j and the operator u;u;F, if i # j (see, e.g. [14]). Using these relations we get
from (26) (taking into account theorem 2) the formulae (64) and (65), correspondingly. O

Corollary 3. Ifthere are formal series of the form (61), which are the solutions to equation (64)
and to one of equations (65), then there is a formal series of the form (61), which is the solution
to the other equation (65).

The corollary provides a way of linearization analogous to the one given by the formulae (42),
(43).

We have a hypothesis that there is a ring P of some functions of a, b such that the following
diagram is commutative:

Pllx, yIl = P
D A (66)
Pllx, ylIl = P

where 7 is an isomorphism defined by

T an,ﬂ(a,b)x"y — an,ﬁ(a, b) (67)

and D(f) is the operator (13).

We cannot give the complete description of the ring P but we consider some examples
which show that the operator A(W) is a kind of dual operator to D( f) in the sense that we can
replace the search for a Lyapunov first integral by searching for a solution W of equation (64),
the search for a linearizing transformation by the search for solutions of equations (65), and
instead of looking for algebraic invariant curves we can seek solutions f (a, b) of equation (63).
This means, having solutions of (63)—(65) we obtain, using 71, the algebraic curve of
system (11), the Lyapunov first integral or the linearizing transformation, respectively.

In the examples below P is the set of formal series constructed as follows. Consider an
operator similar to (21), but more general. Namely, we allow the coordinates v, of the vector
¥ to be some rational numbers. We denote such an operator by L(v) and by E the monoid of
all solutions of the equation

- m
=)



The centre and isochronicity problems for some cubic systems 10285

where m, n runs through the whole set of non-negative integers. Let k[[ E]] be the monoid ring
of the formal series of the monoid E over the field k, which means the set of the formal series

of the form
F= fo(u)[‘)]

—

where «(,) € k,v € E. In the examples below we will see that if f(a, b) € P is a solution
of (63) then 7r ~' (f) is an algebraic invariant curve, if f = 1 +Y_dy p(a, b)isasolution of (64),
then xym ~!(f) is a Lyapunov first integral and if f is a solution of the first (the second) of
equations (65), then the first of the equations of system (11) is linearized by the substitution
z=x1"'(f)
(the second one by z, = ym ~'(f)) and the statements are reversible.
Consider now from this point of view system IV from table 1. In case (1) the operator (62)
admits the eigenfunction
w); = 1-— ap
with the cofunction
ki = 2by,
and in this case (1, b) = bg,. Therefore
W= (- ap) "
is a solution of the second of equations (65). In this case the symmetry conditions are
fulfilled [18, 20, 31], hence there is a Lyapunov first integral \Il()g, v). This yields that
the second equation of the system is linearizable by z, = yr =} (W) and the first one by
21 = V(x, y)/ (= (W)).
In case (2) the system has the form

X =x(1—a_px'y* = axx® + bpy?) ¥ = —y(1 +axx® — bpy?). (63)
The operator (62) is

Agvy—@ (W) =

Iw
a_1p(=3+a_ip+ax — bo) + ——ax (2 — 2a_12 — 2ax + 2bpy)
da_12 daxg

W
+—b02(—2 — 26120 + 2b02) (69)
by

and the corresponding operator L is

_ —1 2 0
L) = ( ) >v1 + (O)v2+ <2)v3

where v| € Z, v, vz € Q and are of the form |v,| = 21 lv3| = 2£ with o, 8,7 € N.
When by, # +a_i,./ax we have four eigenfunctions w; = m(s;) (where s; are the
invariant curves), namely,

wy =1—/ax —+/—a_12/ax + by wy =1 — /ax ++/—a_12 /ax + bo

(70)
w3 = 1+ Jax —/a_12 /ax + by w4=1+\/‘120+\/‘1—12— Va0 + boa.
The corresponding cofunctions are
kl = —.J/ay —a20+b02 +./—a-12 \/02()+b02
ky = —\/ary — axg + byy — / —a_12 \/020+b02 (71)

ks = az — az + by +/a—12 /az + oz
ky = \/ax — ax + boy — \/6L12— ax + bgy.
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Consider now the equation

4
Za,»k,» = —(1,b). (72)
i=1

The equation has the solution o; = —1/4 (i = 1, 2, 3, 4). Therefore the function

Z= —i(ilogw,)
i=1
is the solution of the equation
Aavy-@(Z2) = —(1,b)
and, hence,
Ws = exp(Z) = (wiwowzwy) ™/
is the solution of the equation
Aavy—-@ (W) = -1, b)W.
This means that the second equation of (66) is linearizable by
2=y ' (W)).

So, in this case we were lucky to find the linearizing transformation for the second equation
of system (68) using equation (72) just because there are some constants, «;, satisfying the
equation. However, the general situation is more complicated.

If we consider a system which has a Darboux integral or a Darboux linearization of the
form

Ay a2 (o)
P Sy

then the exponents o; are, generally speaking, functions of the coefficients a;;, bj; of our
system. Therefore, noting that for w; of the form w; = 1 + h.o.t the property A(w;) = k;jw;
yields

.A(lOg wi) = k,’

we see that an analogue of equation (36) is the equation
> aiki+ Y Aler) log(w;) =0 (73)
i=1 i=1

(if we look for a first integral of the form 1 + Zf’i L hi(x, y) with h; (x, y) being homogeneous
polynomials of degree i) or

Y ki + Y Al log(wy) = (1,a) — (1, b) (74)
i=1 i=1
(if we look for a Lyapunov first integral) and an analogue of equation (38) is

Za,-k,» + ZA(C[I) log(w,) = (1, a). (75)
i=1

i=1

One can check that in the case under consideration the equation

4 4
Z ok + Z Aqvy-2 (@) log(w;) =0 (76)
i=1 i=1
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(with w; given by (70) and k; by (71)) has the solution

w a_1z \/ax + boz
1 = —_—m
—a_12 \/ax + by

Therefore the function

Up = wi'wSw; 'wy
is a solution to the equation A;vy—2) (W) =0,
Up—1

/ 3/2
—4 a_120, +b02a20

gives a solution to A(vy_2) (W) = ((1, a) — (1, b)) W and the function

Wo =

Wi = Wy (wiwawzwg)'/*
provides a solution to A;vy—2 (W) = (1, a) W. Hence, the linearizing substitution is
21 =xa” (W),
In the case byy = a—_12 4/, the function
= 2a%2(—_11+ ) +(v2 (log (1 + /ax — ﬁ\/a,_lzaéo)
—log (1+Vam +v2 ya i ay ))/(8y/aaz)
is a solution of the equation

Agvy—ayW) =((1,a) = (1, )W

where

ow
Aqvy—@ (W) = ma—n( —3+a_p+axy —a_n+/ax)

W
+—a20(2 —2a_13 — 2ax0+2a_1» »,/az()).

8a20
Also in this case
_1
Wa = w, > (wywy) ™/
is a solution to
A(/V)f(i)(W) =—(1,h)W.
Therefore the linearizing substitution is
a=xa (Wo)/m (W) =y (W)

The case by = —a_12 /ayg is similar.
Consider now system (IV)-(5). It is easily seen that

w = 1+ 2by — da_1zby +a* by

is an eigenfunction of the operator A(W). One can also check that the function
Wy = (1 — %a_lz)w_3/4

is a solution to A(W) = (1, a) — (1, b) and

Wy = w4

o) = —U) 0[32—1 O{4=1.

(77)
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gives a solution of A(W) = —(1, b). Therefore the function F = xym ~' (W) is a first integral
of system (IV)-(5) and the system is linearizable by

21 = xm N (Wo) /(W) 2=y (W)).

Case (0) is a partial case of the system with homogeneous cubic nonlinearities [7]. Thus we
have completed the consideration of case (IV) of theorem 3.

Here we would like to mention a problem we faced. The operator A(W) for the general
cubic system (31) has the form

3 aw 3 aw
D —aili—j—i(lay+j,b)+ Y

i 04ij 5= Obij

biji —j—i(l,a)+ j(1,b)) (78)

Going back to the case (IV)-(2) we see that after substitution into the operator (78) the defining
equations of case (IV)-(2), by 1 = apx + boa = axy + byg = b;y = a;; = 0, we get the
operator (69). However, frankly speaking, we cannot claim, based solely on theorem 4 that if
there is a solution of the equation

Aavy—-@ (W) = W((1,a) — (1, b))

then the system has a centre, because we do not know of any proof of the statement that, after
substituting into operator .A(W) the defining equations of a component of the centre variety
and after getting an operator denoted by .4, an analogue of the theorem 4 holds. Nevertheless
in such a case one can consider from the beginning system (68) and then easily derive an
analogue of theorem 2, and from them an analogue of theorem 4.

The examples above show that in the case when the eigenfunctions w; are polynomials
and «; are constants in order to get the linearizing transformation one can—with the same
success—Ilook for invariant algebraic curves or eigenfunctions of the equation (61) and then
construct a linearizing transformation or a solution of the equations (65) (a first integral or a
solution of (64)), correspondingly. However, if w; are not polynomials or «; are functions,
then the problem of constructing the solutions of equations (63)—(65) becomes very difficult
and it is preferable to apply the usual Darboux integration (linearization) method.

Nevertheless, we found one case where our new approach based on making use of the dual
operator A(W) turned out to be more efficient than the traditional one. Using the approach for
system VII-(1), i.e.

% = x(1 — apy + apibiox?) ¥ = —y(1 = biox +ag1bioy?)

we obtained in [27] a type of linearizing transformation which was unknown before.
Consider this case in detail. Here the first of equations (65) has the form

A(W) = W (ag + b}y — aoibio) (79)

where

w
AW) = ——agi (=1 +big +af; — aoibio) + ——bio(1 — ap1 — biy + agi1bio)-
3001 ablO

Then wy; = 1 — ag;, wy, = 1 — byp are the eigenfunctions of the operator A(W) with the
cofunctions

2 2
ki = ao1 +ay, — apibio ky = —big — bjy +apibio

correspondingly.
If we assume that the Darboux exponents ¢; are constants and try to construct a Darboux
linearizing substitution using only these eigenfunctions, we have

2
0l1k1 +0t2k2 = dp1 +b10 — a01b10.
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Obviously there are no o, oy satisfying this equation. But as we have mentioned above the
exponents ¢; of the function (34) are not necessarily constants but can also be functions of
a;j, bj; satisfying, in our case, the equation

a1 k) + oo (k) — 7N (1, @) = ey (aory + adyy* — aoibioxy)
+ay(—biox — b2gx* + agibioxy) + P(x, y)/x = 1 (80)

or

arr k) + oo k) + (1, b)) = i (aory +ag,y* — aoibioxy)
+aa(—byox — blox? +agibioxy) + Q(x, y)/y = —1. (81)

Still, itis easily seen that that there are no functions « (@, b), «»(a, b), satisfying equations (80)
or (81).

This means that the system is not Darboux linearizable in the sense of definition 6.
Nevertheless we will show that in this case there exists a linearizing transformation in a form
a bit more general than (34).

Indeed, in this case the symmetry conditions hold [18,20, 31] and, therefore, the system
has a centre in the origin. Hence, due to theorem 4 there is a formal series W, of the form (61)
such that

A(Wo) = (aoi + by — agy — bio) Wo.
Therefore we can consider the equation

arky +axky + y(aor +biy — ag; — bio) = a1 +biy — aoibio
which has the solution

1
(}(1:)/:§ o) = —

=

It yields that for the function

Z =1 Wy+1In(1 —ap) — 3 1In(1 — byo)
we have

A(Z) = ap; + b3y — anibio
and, hence,

W=expZ= Wol/z(l —ao)'*(1 = byp)~'?

satisfies (79).
Thus,

1/2 _ 1/2 _ 12
2= ﬁ(f) (1 amy) 2 = ﬁ(X)W <—1 b‘°x> (82)

y 1 —box X I —aoy

is the linearizing substitution. Note that according to theorem 1 the coefficients vy, of the
integral W are (k, n)-polynomials and, hence, the substitution is analytical.

The type of linearization given by (82) is more general than the type described in
definition 6 and, to our knowledge, was unknown before.
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6. Conclusions

In this paper we presented efficient algorithms for computing the focus and linearizability
quantities for polynomial vector fields. We applied them to the investigation of the
linearizability of eight-parametric subfamilies of the cubic system (31) with one quadratic
and three cubic terms (per equation). There are 12 such subfamilies. For all these systems
we computed, using Mathematica and the algorithm of theorem 2 the first 14 linearizability
quantities, iy, ji1,-..,i77, j77. Then for ten of these systems using Singular we found
the primary decompositions of the corresponding ideals and, thus, obtained the necessary
conditions of linearizability presented in table 1.

Then we proved that these conditions are also the sufficient ones, for all cases, except
V-(9) and V-(6). Thus to complete the investigation of the linearizability problem for these
subfamilies of cubic systems there remains to prove the sufficiency of the conditions V-(6), (9)
and to find the necessary and sufficient conditions of the linearizability for the systems

x=x(1—apy—anxy— a02y2 — a_13x71y3)
¥ =—y(1 — biox — b3 _1x*y™" — byox? — by1xy)

and

X =x(1 —agy —anxy —apny* —a_i3x"'y*)

1

¥ =—y(1 —biox — b3 _1x>y~" — byox? — byjxy).

We also have shown that there is a linear partial differential operator, A(W), which is
dual to the Lie derivative of our vector field, in the sense that the isomorphism , defined
by (67), maps invariant curves on the phase plane to eigenfunctions of the operator A(W),
first integrals to the solutions of the equation (64) and linearizing transformations to solutions
of equations (65). Because 7 is an isomorphism, the statement is reversible. Using this new
approach we found a new type of Darboux linearization, presented by formula (82), where
both equations of the linearizing transformation contain the Lyapunov first integral.

Note also, that in fact in section 5 we presented a new method of constructing a partial
solution of some first-order linear partial differential equations with polynomial coefficients.
Namely, for some partial differential equations it is possible to find a dual second-order system
of ordinary differential equations, such that the isomorphism (66) maps invariant curves and
integrals of the ODE system to the solutions of our original PDE. Because integration of first-
order PDEs is very a difficult problem and very few methods for its investigation are known, we
believe it would be very useful to know for which classes of PDE our method can be applied.
However, this could the subject of a separate paper.
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Appendix

We present in figure A.1 the Mathematica code for computing the focus and linearizability
quantities for system (32) based on the algorithm of theorem 2. With obvious changes one
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(*The operator (12) for the system (32)%*)

Infij:= 1ll[nul ,nu2_ ,nu3_,nu4_,nu5_ ,nué_,nu7_,nu8_l:= 0 nul + 2 nu2 + 1 nu3

2 nu5 ¥ 1 nu6 + 0 nu7 + 1 nuB;

+ 0 nu4 +

12[nul_,nu2_,nu3_,nu4_,nu5 ,nué_,nu7_,nu8_]:=1 nul + 0 nu2 + 1 nu3 + 2 nu4 +

0 nu5 ¥ 1 nué + 2 nu7+ 0 nu8;

(* Set
quantities i {kk}, and

In{3]:= a=1; b=0;
{(*Definition of the function (15)*)

Inf4]:= v[kl_,k2 ,k3_,k4_ ,k5 ,k6 ,k7
v[0,0,0,0,0,0,0,0]=

a=p=1l_ to compute the focus quant:.t:l.es, a=1,b=0 to compute the isochronicity
a=0, b=1 to compute -j {kk *)

,k8 1:=v[kl,k2,k3,k4,k5,k6,k7,k8]=
ModuIe[(us coef} coef 11Tk1 E2 k3,k4,k5,k6, k7 k8] 12[k1 k2,k3,k4,k5,k6,k7,k8];

us=0;

If[k1>0 us-us+(11[k1 1,k2,k3,k4,k5,k6,k7,k8]+a)*v[kl-1,k2,k3,k4,k5,k6,k7,k8]1];
If[k2>0,us=us+(11[kl, k2-1, k3 k4 k5 k6 k7 k8]+a)*v[k1 k2-1, k3 k4 k5 k6 X7 k8]]
If[k3>0,us=us+(11[kl,k2,k3-1,k4,k5,k6,k7,k8]+a)*v[kl,k2,k3—1,k4,k5,k6,k7,k8]];
If[k4>0,us=us+(11[kl,k2,k3,k4-1,k5,k6,k7,k8]+a)*v[kl, k2,k3,k4-1,k5,k6,k7,k8]];
If[k5>0,us=us-(12(k1l,k2,k3,k4,k5-1,k6,k7,k8]+b)*v[kl, k2,k3,k4,k5-1,k6,k7,k8]];
If[k6>0,us=us-{(12[kl,k2,k3,k4,k5,k6-1,k7,k8]+b)*v[kl, k2,k3,k4,k5,k6-1,k7,k8]];

If[k7>0,us=us-(12[kl,k2,k3,k4,k5,k6,k7-1,k8] +b) *v[kl, k2,k3,k4,k5,k6,k7-1,k8]];
If[k8>0,us=us-{12[kl,k2,k3,k4,k5,k6,k7,k8-1]+b) *v[kl,k2,k3,k4,k5,k6,k7,k8-1]11;
If [coef!=0, us=us/coef] ; If [coef==0, gglkl,k2,k3,k4,k5,k6,k7,k8]=us; us=0]; us]

{* Maximal number of the focus quantity to be computed¥*)

Inf6]:= gmax=T7;

(*Computing the quantities q[1], gql2], ...

In{7]:= Dolk= sc; num=k; qglnum]=0;
For [il=0,il<=2 k,il++ ,
For [12=0,12<=(2 k-il),i2++ ,
For[i3=0,13<=(2 k-il1-1i2),i3++ ,
For[i4=0,1i4<=(2 k-i1-i2-i3)},i4++,
For [i5=0,15<=(2 k-il1-i2-i3-i4),i5++,
For [i6=0,16<=(2 k-i1-i2-i3-i4-i5),1i6++,
For[i7=0,1i7<=(2 k-i1-i2-1i3-i4-i5-16),17++,
For[i8=0,i8<=(2 k-i1-i2-i13-14-i5-i6-i7),1i8++,

up to the order "gmax"¥*)

If[(ll[ll i2,1i3,14,4i5,16,17,i8]==k) &&(12([i1,12,4i3,14,i5,1i6,17,i8]==k),

v[il,i2,1i3, 14 15 16 17 18],

[num]=q[num]+gg[i1,i2,i3,i4,i5,iG,i7,iB]TT[il,i2,i3,i4,i5,i6,i7,iB]]]]]]]]]],

sc,1l,gmax}]

{(*Output of the computed quantities: the variables on the right-hand side should

correspond to the coefficients of the system*)

In(g]:= TT[11 ,12 ,13 ,14_,15_,16_,17_,18_]:=a01"11 a20712 all"1l3

b02*17 bI0"18

Inf{s]:
Do[Print[" q[", i, i, "1=",qlil], {i,1,gmax}]

a02714 b20715 b1l1"16

Figure A.1. Mathematica code to compute the focus and linearizability quantities for system (32).

can apply the code to compute the quantities for the other system from table 1 as well as for

computing the quantities for any polynomial system.
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